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This eport disctaes a definition of the effective coupling coefficient fot the
body-force clan of elecuomechaical trarducen. This definition is based on
the ditrlbmuon of energy in the tramducer and is therdore paltlcularly applica-
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DYNAMIC COUPLING COEFFICIENTS
FOR DISTRIBUTED PARAMETER PIEZOELECTRIC £RAINSDUCERS

INTRODUCTION

Distributed parameter transducers may be described with some
success by analogous circuits containing frequency-dependent circuit
elements, but the extraction of an effective coupling coefficient from
such a circuit is usually done with approximation techniques wbU:c-i have
doubtful validity for devices %.-+.h high material coupling.

This report exploits a definition of the effective coupling based on
tl-e di-•tributi.o, of energy in the .ibrating system and applies it to vari-
ous specific transducers. This definition riot only Froduces exact values
oZ the coupling factor for all frequencies and modes; it also shels light
on the somewhat enigmatic "meaning" of the coupling coefficient con-
cept for composite transducers.

In this report, the development begins with a derivation of the eqla-
tions of motion, followed by a complete electromechanic;.- descripcion
of three ty-es of distributed parameter transducers (all of the -longi-
tudinal vibrator" class). This work, of course, i3 available in many
placeb in the literature; it is reproduced here to establish nomenclature
for the main body of 41he report.

•he third section introduces the defini-ion of coupling to be used
and applies it to the three transducers described in the preceding sec-
tion. A general discussion of coul ling coefficients for composite trans-
ducers follows. A theoretical description of a partially excited longi-
tudinal vibrator is compared with experimental data in the final section.

The t-ansducers con-.idered in the report are all piezoelectrically
excited, but the concept applies equally wcll to the magnetostrictivc
devic -s.

:N



DERIVATION.OF THE LONGITUDINAL
VIBRATOR EQUATIONS

THE CONSTANT FIELD
LONGITUDINAL VIBRATOR

Consider a segmented longitudinal vibrator of length 21 which
vibrates in the x-direction symmetrically about its center. The
lateral dimensions of the bar are small compared to I so that lateral
vibrations are ignored and the shape of the - ross-sectional area, A.
is arbitrary (rectangular, circular, and annular shapes are common).
The deflection N(s) of the plane at position x, and the stress at
this point, T(x), obey the differential equation

. 0 (1)

for harmonic excitation at angular frequency w. The density of the
material is p .

Numerous electrodes placed in the y-. plane and evenly spaced
with separation t along the x-axis produtc a an electric field whose
x component is 2(m) and an electric displ.( -:..ent with x compo-
nent D(x). The electrodes are connected in parallel in the usual
fashion. These electric variables are connected with th.- stress andthe
strain, S(x), by the following piezoelectric equations of state:

S(10 a 9 T(s) d + d 3- (z) 33-(2)

D(a) - d3T(s)W + e? 2 (s).

The strain is the gradient of the deflection, S -e /oa . Assunring that
the electrodes are spaced so closely that the electric fPeld strength
does not vary along the length of the materi;.l (a•!•!-0), Eq. (1) be-
comes the familiar Helmholtz Equation:

-- 2 ÷ 2 psM, (x) "- (3)
ax2

-Ie m ma Iw [|r | m•| •~ ~ ~ m w



The general solutinn of Eq. (3) is

f(I) B,Iin I= + B 2 cos It, (4)

where the wave number k -/€. , and the speed of sound in the mate-

rial at constant field is c3 =(psrY'. Applying the boundary conditions
on C

(0) - 0
(5)•(,). •.*)

results in the exact solution of the differential equation,

s(. iaki

aim , -(6)
uis lit

and, immediately, the distribution of strain-,

S(W) - -.li c "a (7)a1z sin ki

Use of the first equation of state now., gives the stress distribution in
the vibratoz:

(The subscript on £ is a reminder that the field is now regarded as
a spatial constant.)

If the ends of the sample are free [T(I)-0I, Eq. (8) establishes
the relation between the two amplitude parameters, and F.,

ok cot kI - d3 3 . (9)

The resonant frequencies of the longitudinal vibrator depýud on the

electrical terminations. If the terminais of the transducer are short-
circuited, the natural frequencies are found from Eq. (9) with 70= 0:

po



cocksI - 0

Aks - M!; ,W, (10)

2

(The superscript E indicates constant voltage conditions.) "he cur-
rent flow between two electrodes is

i.- joAD (1)

where D. is tu.e value of the displacement current in the region be-
tween x. and x.- 1 . The total current flow is the sum of the i.,' s:

I - j.uA1D, - (IZ))D
I wIS aA1D (12)(I )

- IwA f D(s)dx. (13)

Under the many-electrode assumption (t/t>> 1). D(z) may be regarded
as a continuous function of x. It is obtained by inserting Eq. (8)
in the second equation of state:

at k, (14)( T8

Recognizing the material coupling coefficient

k 3, (15)

and performing the integration of Eq. (13) results in the total current

r - f. + (1-k 3)I. ( (16)
a L$-.

Under open-circuit conditions, there is no current flow. Putting Eq. (16)
equal to zero yields the open-circuit deflection/field relationship which
must coexist with Eq. (9). Combining these two produces the equation
for the allowed frequencies at constant current:

k2

k'I co, t . (17)
1-k 2 3

33

4



The open-circui& voltage is simpli

v ,.,. Ot , ý -k 3  d118)

Examination of Eqs. (10) and (17) shows that the short-circuited
frequ, "cies (constant voltage resonances) depend only on elastic con-
stants and dimensions, while the open-circuited frequencies (constant
voltage anti-resonances) depend also on the piezoelectric properties of
the material as indicated by the presence of k33 in Eq. (17). Further-
more, if one measures the fundamental (m = I) resonance and anti-
resonance of an unloaded stack, the material coupling may be found by
forming the ratio t- . i/w and noting that

k| ,, k - -!. (19)
2

Now Eq. (17) becomes'

Or cote-.a(20)

1-hka 2 2
33

The electrical admittance of the device is found by dividing the
current in Eq. (16) by the voltage, E,•:

T a2 33 k + I t (21)

Because this analysis considers a lossless system, the electrical admit-
tance is entirely imaginary. Rewriting Y, in the form

- jOA J,3' k2tkt! -a- A(l-k - 3"

shows that the admittance has the form of two suscepLances in parallel.
The second term represents the susceptance of a capacitor of value

C 2 33 (Ikis (23)

This equatlo Is a -. lU-known relation between n.aterial coupling and the resonant-to-anti-
resonant frequency spread. See: Delincoun " . F.oc. Institute of Radio Eygineers. vo!. 48, p. '20.



while the first term is calledthe motional susceptance. By introducing
the characteristic mechanical impedance of the material, Z, = pcA,
this motional susceptance takes the form

( 3/s•eg 33W Nza (24)O t "-ijtecotkt -1 -Zo . k

where N - Adss/s8:t is called electromechanical transformation ratio.
An equivalent circuit which has the admiittance Y. at its terminals
is shown in Fig. 1.

1:N

CO -jZocotkl

Fig. I - fqn*i Ciwvt of te Comam Field L=#tudian Vibato,

Examination o.' Eq. (21) shows that the resonant frequencies de-
fined by Eq. (10)- the conctant Noltage resonances -- cause Y,- ,
while those frequencies defined by Eq. (17) - the constant current
resonances -produce Y. - 0.

The capacitance C. is called the blocked capacitance. It may be
interpreted as the capacity of the segmented bar when it is clamped to
prevent motion; th- dielectric constant applicable for this calculation
is designated "longitudinally clamped": C . ET (I _k2).

The analysis of a thin bar in longitudinal vibration due co transverse
electric fields ("31" mode of operation) follows the form of the pre-
ceding theory closely; the "31", subscript replaces the "'33" on all
material constants. The reason for the similarity ifS that both methods
of excitation share the common characteristic that the electrically pro-
duced strain is uniform in the direction of mltion. This is achieved if,
"tbe 1133" case by using closely spaced electrodes placed normal to the
E vector and i . the "31" case by using continuous electrodes along
the sides of the bar.

If, however, a bai vibrates *o that an appreciable portion cf the

acoustic wavelength fits between the electrodes, there will be a variation

I



of field in this interval. This may occur for higher modes of the
"33"1 vibrator just discussed (large m), or for the fundamental mode
of a column of ceramic with electrodes only on the ends (z - ±1) and
none within the material (i.e., a solid, rather than segmented, stack).
Such electromechanical behavior is characterized by d8/ox A 0
(spatially variable field) and is described in the next part of the report.

THE VARIABLE FIELD
LONGITUDINAL VIBRATOR

The an-lysis of this type of vibration parallels that just discussed.
The same geometry and coordinate system are used, but it is appro-
priate to employ a different set of Equations of State:)S(z) 8353T(i +' S3 D(a)

(Z) - 33 T(z) + T3,. L(:5.

It is interesting to see how the material constants with superscript D
are related to those with superscript E. For constant D (or D = 0),
Eq. '2) becomes

S sf3 Td+d33

I d,,T+ e, T 0 (26)

Eliminating C from this pair yields

S --(-i_--2_T. (27)

This is Hooke' s Law for the constant D case; the elastic constant is
smaller than 9 and is

S 3 - s 3C -k 3, 3,). (28)

The 2lectric constant pT appearing in Eq. (25) is the reciprocal
of the permittivity of the material, J. The piezoelectric constant g
is related to d by

d T83, " 3/633 (29)



I-a

The first of Eq. (25) is inserted in the general differential equation,
Eq. (1). The resulting equation is simplified by recognizing that,
although 2 may have spatial variations along the x axis of the bar,
the electric displacement must be ccnstant and thus aD/Ix - 0.

The two electrical conditions are, as before, constant voltage and
constant current. The first relation is obtained by making the total
voltage developed ac-oss the ' wo electrodes vanish:

E - f E( z )dz - 0. (30)

The open-circuit conditions are established by making D = 0. The
two sets of natural frequencies that result are found from:

sbot circuite: KcIt cozt 0(IEI) - k()
33

opencitcuite& co(,(,I ) - 0 (32)

The wave numbers %" ad 0 are different from those in the preceding
section since different elastic constants are used for this type of vibra-
tion:

NNote that the constant voltage resonances depend ou coupling and the
constant current frequencies do not. This is the reverse of the behavior
of the segmented bar described in the preceding section.

A circuit which has the same electrical impedance as the vibrator
is shown in Fig. 2.

1 ,CE

CO -j ZcotKk,

Fig. 2 - Equivalet Clrcui: of the Variable Field Longildinal VlbratcT

8
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The values of the circ'uit elements are

AT Adsi C
C.- (I± (-k~ N -!L C 3

' N 2s

33

The frequencies which satisfy Eqs. (31) and (32) make the admittance
of this circuit infinite and zero, respectively. Equation (31) shows
that the constant voltage resonances are displaced below their values
in the dl/uz - 0 case; the overtones are not integral multiples of the
fundamental.

This is represented graphically in Fig. 3 where (tano) and (Y /k 3)

are plotted against KI ; the intersections of the tw-n curves represent
the natural frequencies.

3 /V

Fig. 3 - Grapl-cal Repmestmon of Eq. (31) (see text)

Note that the roots are displaced from the lower modes,2 but
approach e,'en overtones for large (,%).

Furthermore, for low values of the material cou-ling coefficient
k 3 3 I the slope of the straight line increases rapidly, and the f.--qu'incv
disolacements become small even for the lower modes.

2This behavior occurs also foi sheam modes. See:, H. F. Tiersten, Journal of the Acoustcal
Society of Amcnca vol. 35, p. 53. Januiry iS33.
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By measuring the w" and J for the fundamental mode and forming
the ratio r = , one can determine the rmaterial coupling from

0 . cot .(33)

This equation, and its companion for the segmented bar Eq. (20),
assume a more familiar form by using the notation fV f ' + Af. Then3

t Segmeated Bar. . 33. - Lf Lan (34)

(dF /ax O) 33

End-elecuoded Bat. Itk1 
- fS(oD/da -o0) * 2"

These relations are illustrated in Fig. 4.
.70 A a iO. &'0)

/ • A. (Et_.33)

.60-

.30F

.20

.10

0

LOO 1. 1.20 1.30
r

Fig. 4 - Ceramic Mairrial Coupling Coefficients as Determined from the Ratio of Anti-Resonant
to Resonant FreqLencies for. A. Segmented Uar and Side-Electroded Bat[ (a- az - 0).

B. EnA.-Electioded Bar (D 'ax - 0) ; and C. Effective Coupling for Lumped Conuant Transducer

S
Berlincourt, op.c %.(footnote 1).

.0



Equation(34) may also be used to find k., for samples with their

electrodes parallel to the displacement. This is because 82/1 -0

is satisfied for side-electroded bars also.

THE PARTIALLY EXCITED
LONGITUDINAL VIBRATOR

The type of vibration discussed in this section results if the seg-

mented bar is driven with a given number of the electrodes on either

end ca sconrected so that only the central portion of the bar (symmetri-

cally located about the origin) is electrically excited.

Clearly the ceramic's elastic properties are different in the two

regions; therefore, the wave equation must be solved separately in
each portion of the bar and the additional constants eliminated by

joining the two solutions at the point of discontinuity.

Let the parameter y designate the fraction of the bar that is
excited electrically (O< y < 1), and let the subscripts "d" and "f"
designate the driven portion (IzJ < yt ) and the free portion

(yi <Ixz < It,, respectively.The equations of state, Eq. (2), apply to

the d-section and those of Eq. (25) to the f-section. In using Eq. (25)

it should be recalled that

D(z) =- 0 t>1I >>yt,

since those electrodes are disconnected from each other. If the elec-

trodes in the f-region were tied together but not connected to the
electrical generator, a different sort of motion would result, but that

case is not considered here.

The analysis in the d-section follows the derivation of the constant

field longitudinal vibrator up to the equation for the displacement func-
tion, Eq. (4). Making the vibration symmetrical about the origin with

ed(o) - 0 and specifying the displacer-'nt at the plane of discontinuity,
() , yields the particular solution

sin K z

sin yA d

!no

111
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where the wave number K, applies only to the d-region,

-aW (37)
K-

and

Ad - K41. (38)

Differentiating Eq. (36) produces the strain function; this is then

combined with the first equation of state to get the stress distribution

in the d-section of the bar:

V 33 4CsKd 3(9

A procedure similar to the above is used to find k,(z) =a TI(z).

The boundary conditions used are:

a. Matching displacements at the v interface: 40(y)- 4.
b. Unloading the free end: Tt() - 0.

The results are

Cot At co. K, A + sin Kt z
4(z)~ ct AcosvA +sinyA,()

and
SK 'Y cos Ktz - Cot AitK

Tf(z) _ sD c yA (cotA+me yA,) (41)

- /

where the wave number ., is CS =- A, K.The remaining

condition on the two solutions is that of matching the stresses at z - y•

Since there are no more undetermined constants in the problem, tkis

operation will produce a fixed relation betw-veen the two amphlitde-

determining parameters, IC mad F The resulting equation is the

analog of Eq. (9) for the partially excited bar:

.2
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Kt I-o Ae yAt Kd cyAd L (42)
, coA,+ tmy A, 0a3$ 3$ 3"d) $33

The natural frequencies of vibration when the electric terminals

are short-circuited are those which satisfy Eq. (42) when E - 0.

Designating the allowed values of A. for this conditioi, by the super-

script E (constant voltage), and using the relation A, - Ad 41 -k? 3

and the trigonometric identity

ctyA-A. a tea(I- y) AA

cot yA wt A + 1

one obtains the foUowmng implicit ze-etion for A" as a function of y

[ta(1-) A",k~ ý ayA, usA-j (43)
73__

The constant current resonances are found by riaking /I D dx - 0.

The distribution of electric displacement along the bar is found from

the second equation of state:

Dd(z) - £•e.+ d• T (z)

e ( )dS,4K4 coaxz d(44)-ET, *3( _,2 ) + -
33 .AI.* i

Performing the integration and equating the result to zero yields the

open-circuit voltage/defiiettLv•i ilati, :

S.aE T , E.(- 3  d 0 (45)

This result is combined with the fixed 4/e relation given in

Eq. (42) to obtain the open-.zircuit resonances.



),A.' ,cot __A,_ (I'-y) VI k22 -A-d (46)
'1 41.k2 1k2

N 323 1 33

Equations (43) and (46) reduce to Eqs. (10) and (17), respectively,
when y = 1. Combining Eqs. (43) and (46) to obtain an expression
for ku in terms of the resonant to anti-resonant frequency spread is
a more formidable chore than it was for the fully excited cases treated
earlier. Furthermore, it is doubtful that i.h- result of such work would
be very useful since it is unlikely that knowledge of k3A would be
sought with experiments on partially excited bars. it is instructive,
however, to observe the variations of wl and ws with y. The
values of these two frequencies for y = I serve as convenient
normalizing values and one may examine the dimensionless ratios

s(L) - (47)
0i (1)

and

( 1) -- Y . (48)

With this notation and Eqs. (10) and (1?), the y-dependent A
variabies become

A:y) - (u/2) e (Y) (49)

Ar(Y) - r(u/2) 81 (y) (50)

The solutions of Eqs. (43) and (46) for 0i(y) and 9(y) appear in
Fig. 5 for the specific cas, k,, = 0.64 (r = I. 22). The constant
current solution is displaced upward by the factor r on the graph
so that the curves refer all reiative £reluvi•,=C5 t ,

Toulis has pubiishe1 data from an experiment involving a partially
excited stack 4 with an r = 1. 22 for y = 1. These data are

4W. 1. Toulls, 'Redefuution of Effective Elecuomecharucal-Couplig Factor,- Journal of the
Acoustical Society of America, 35, no. 12, p. 2024, November 1963.

14
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LMO - &A AA MU, "TA~r

L

1.00

0 1 .2 .' .d .5 .6 .7 .' .9 1.0

Fig. 5-8 3 and r8l v'fl y for k33=0.64(#=1.22)

superimposed on the curves of Fig. 5. The failure of the experimenta _

anti-resonant frequencies to coincide with the theoretical curve may be

due to the fact that the measurement of anti-resonant frequencies is

generally more difficult than resonant frequencies and mechanical

losses (which were ignored in the analysis) are more influential at w.

|i
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THE ELECTROMECHANICAL COUPLING COEFFICIENT

THE QUASI-STATIC CASE

In the introductory sections of Hersh's excellent report on coupling5

there are listed for review many familiar definitions of the coupling coeffi-
cient. Many of these definitions concentrate on extending the coupling
concept from electrical circuit analysis to the realm of electromechani-
cal devices. Such techniques are indeed useful since the description of
electromechanical devices through the use of equivalent circuits is a
popular method of analysis. In the opinion f this writer, however, these
extensions lose much of their usefulness when applied to distributed
parameter transducers, since the circuits which describe such devices

often contain frequency-dependent elements.

This objection causes one to examine another class of definitions-,

those which seek to describe coupling in terms of the distribution of
electrical and mechanical energies in the transducer. One definition
from this group which has particular applicability to the distributed

parameter transducers examined in this report is that described by
Vigoureux and Booth,' Skudrzykl and Beckmann? This view of coupling

is also exploited by Berlincourt et alintheir contribution to the recent
book, Physical Acoustics.!

The distinguishing feature of this approach is that it considers the
total energy of the transducer system to be the sum of three terms:
the purely electrical and purely mechanical energies without coupling,

andthe mutual(or shared) energy resulting from coupling. The square
of the coupling coefficient for a particular mode is proportional to the
square of the mutual energy divided by the product of the two self energies.

That this definition follows easily from the linear equations of state
for piezoelectric transducers is shown by Bec kmann inthe follow ng manner-

s John F. Hersh, Coupling C. efflcients Acoustics R•search Laboratory, Harvard University,
Technical Memorandum no. 40, pp. 4-25, 1957.

6 P. Vigoureux and C. F. Booth, Quartz Vibrators and Their Apl~icauons, H. M. Stationery
Office, Loaaos, p. 58, 1950.

7 E. Skndrzyk, Die Gunmdlagen der Akutik. Springet-Verlab, Wien, p. 485, 1954.
9 R. Beckmann, "Some Applications of the Linear Piezoelectric Equations of State,

1.R.E. Tranaacti-orn Ultrasonics E ui PGUE-3, pp. 55-59, May 1955.
SW. P. Mason, Ed., Physical Acotutia, vol. a, Part A, Academic Press. New Yock,

p. 189 ff., 1964.

16

---U------



I°

Select a pair of equations of state and write them in the form

J X-Ys I ME (51)

P P Is A PO

The mechanical energy density in the volume where these equations

apply is

TT + - ,++ (52)
2 2 2 AA

while the elkctrical energy dennity is

I D 2*, - Ai1 6;T,+1 T 4i * .e W (32 P 2 P,,PIs 2 .. pa - w +V2 (53)

where the asterisk indicates a complex conjugate, W1  represent

the purely elastic energy, W2  the purely electric energy, and W1 2

the mutual piezoelectric energy. The square of the electromechanical
coupling coefficient is

12
- 3k2 -VIV (54)

Equations (52) and (53) are quite complizated in the general form;

howe-ver, if mechanical and electrical boundary conditions for a
particular type of excitation leave only a few of the ST and ED products
non-zero, the coupling coefficient may assume a more simple form.

This may be illuzstrated by considering a sample with the applied
field parallel to the axis of polarization (E 3 0, 2. -= -0) and all

stresses normal to this axis zero (T, = T 2 7 0, T 3 / 0). Under
quasi-static conditions, T3  and E 3 are uniform throughout the
piece andthe applicable equations of state Eq. (51) reduce to

Lq 3g *- T~ 3  i+d 3E
D 3d T÷ (+T)

33 d T3 +3 3

The energy densities of Eqs. (52) and (53) are now quite sin.plL,and on.
finds the total to be

2  +2 ! d 3T) +T ET F2
2 3 3 (2 3/2

"MM



Therefore, from Eq. (54), d 3T 2

k 2  \3 33/
€$2

33 3

The above procedure applies to calculations using the so-called
homogeneous equations of state in which the dependent and inde-
pendent state variables are each intensive or extensive, respectively.
As Beckmann points out, if one uses the "mixed" equations cf
state, the ratio of energies F-q. (54) is not k2 but rather is
(k 2 /(l -k

2 ). This important point is summarized in Table I.

Tabe 1
APPROPIUATE RELATIONS BETWEEN COUPLING

COEFFICIENT AND ENERGY RATIO FOR
VARIOUS EQUATIONS OF STATE

(The abpaipe C indcwen tbe ruiqsoe of a

Eqndmes of Stut Used 12
(iRa M t tiz Foam ) W I V 2

(;)- (:h /)1)

1 0 �BccnA D it. . c/ ,p\

18) ,T)°.,,,,

1 -0

°Beckmiann., op. cit., p. ý6.



DYNAMIC COUPLING COEFFICIENTS

For non-statc conditions the energy densities W,, W 2, W1 2 are
the unrmne of the transducer to account for the distribu-

tions of stress and field which occur in the distributed parame-er cases.
The total energies thus obtained are then used to form the ratio in
Eq. (54).

This procedure will be applied to the three examples ot such trans-
ducers which have been considered in this report.

In the case of the constant field longitucinal vibrator (the seg-
mented bar) one has for the strain energy, with piezoelectric effects
ignored,

13, 2 dV. (58)
V

For T one may use Eq. (8) with d 3 = 0. Calling T. -/&33

the stress at the center of the bar, Eq. (58) becomes

1 T 2k2  I~
1-23 A^.-- S2kzdx I

(59)

- J-1 s 3 k Iki + 4n kt coa k
4 si9

2 k I

Since the field is const•.ncthe electric energy is simply

1 (T V 1j At 62 (60)

V



The mutual energy is
T12 - d3 3 fE dv

1 Tok rf
- • dk i Jcos ksdz (61)

2

Now Eq. 154) yields the "dynamnic" (or "effective") coupling coefficient

W2  d22~.
k 3 3.3•d~ 2 sis2 kt

12 1 W2 T " ki (ki+*si coskIt)
330..3

Zs•2••(k (62)

"3 k sk (ki + ss hi c* IkI)"

This effective coupling is plotted againstthe mode number, m = kl/(IT/2)
for k3 3 = 0. 64 in Fig. 6 (solid curve). Note that the coupling goes

0____ - Id~ F(kt). 33

.60 33 F(ki)
_-~ 1k 2

* 33

.50F ) - 2 un2 f•t
F i (It uinki + kt)

ke.40 k 53 0.6 11

.30-

O0 1.0 2.0 3.0 4.0

n ktI / (w,,2)
Fig. 6 - Frequency -Dependent Effective Coupling Coefficients for Two Types of
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to zero for even m "since these are prohibited modes of vibration."
At zero frequency the effective coupling is equal to the material
coupling, k5 8 , since the strexs distribution becomes constant.

Of particular interest is k. at the fundamental resonance:

k - az = - /2.

Since there is a constant propc-lionality between these two factors
one could obtain k. as a function of the frequency spread ratio r
by multiplying Curve A in Fig. 4 by (S/v 2 )% ' 0.90. When this is done,
however, the resulting curve differs only slightly from the function
k - J1i77., This latter expression is the effective coupling of a
simple lumped constant equivalent circuit for a one-degree-of-freedom
transducer; it is usually seen in the form

k- l-(f,/i.- (63)

The k. of Eq. (63) is plotted on Fig. 4 as Curve C.

For the constant D case treated previously (the end-electrodedbar),
a similar procedure is used to find the dynamic coupling factor. The
principal difference is that the mixed equations of state, Eq. (25), are
used in the analysis, and therefore Eq. (54) does not apply. The energy
densities in an inlinitesimal volume element are found by multiplying
the equations of state by T and D, respectively.

32-s T +-t DT - 1,+V1,

!ED ! TD+ D2 -- W +V (64)

2 2 933 2 -' 1

Following the rules in Table I
2

______ 12 1w3 3 (65)

"This can also be seen in Equation (9): For = - e(w/2) and a even, the voltage
requited to maintain vibration becomes infinite.

!L



And for the dynamic case, of course,

k2• f s., ur dv)"

I. k2 "fgS D2 dv (fs, 5 T2 dvi
(66)

I1-k323 fD' dv( IfT 2 dVl

The computation to evaluate this expression for the end-electroded bar
turns out to be exactly the same form as that preceding Eq. (62), and
the result is

k 22  2sait-

1,2 .1 _ . cf ( (67)

The results appear graphically as the dashed curve in Fig. 6 for
k = 0. 64. Note that as w . 0 and the stress distribution in the
bar flattens out, the expression in brackets has a limit of unity and
again k. (static) = k33. Since the resonant frequency of the

WD/az-0 bar is coupling-dependent (see Eq. (31)), it is difficult
to evaluate Eq. (67) at resonance. The anti-resonant frequencies,
though, are coupli.ag,-invariant and thus

at OCR 8-.

I - k 2 iv2 1-0 2  2

Unlike the previous case there is no constant relationship for k./k 3•.

For a specific k,,, however, one can evaluate k. versus r
by applying the above equation to Curve B in Fig. 4. The result is
again graphically indistinguishable from Curve C. One may conclude,
therefore, that Eq. (63) is valid for the experimental determination
of the effective coupling of the unloaded eind-electroded bar at anti-
resonance.

This close approximation t, the actual effective coiupling by a saiple
formula is fortuitous. The reason for the agreement lies Aimply in thc

z2

I



fact that the effective stiffness of th.. transducer, though freuency-
dependent, changes only slightly in the interval from resonance to
anti-resonance. The variable r in Eq. (63) is obtained by meab-
urements at two frequencies, while the value of coupling which results
is associated with 3ust one freqiency. In lumped-constant circuits no
difficulty is encountered by this since one constant value of coupling
coefficient applies to all frequencies for which the circuit i,% valid -

the distribution of state variables throughout the transducer is constant
with frequency. When such constancy is not true, the measurement of
the ratio of two separate frequencies may not be an adequate means
of determining the coupling. The derivation of Eq. (63) rests on the
assumption that the mechanical reactance of the transducer varies in
a specific manner (i. e., that of a series L-C circuit), and the inclu-
sion of reactances which vary according to some other scheme (e. g.,
a transcendental equation such as that in Fig. 2) destroys the validity
of the derivation.

Although this discussion shows that the use of Eq. (63) will not
produce exactly the correct value of effective coupling for some com-
posite transducers, the equation still has great utility for comparative
studies of a specific transducer. That is, although the numerical value
of k. obtained may be incorrect, one may quickly check the relative
effect of design modifications on the coupling coefficient by using
Eq. (63).

One further point of interest is that the effective coupling of the
constant and variable field longitudinal vibrators diminishes at each
•,,iviy hiii±L t.Vert.ue resonance. inis is seen clearly in

Eq. (62). for increasing (kt ) the numerator maintains the periodicity
while the denominator causes the maxima of k. to approach zero

asymptotically. This phenomenon is due to the numerous nodes in the
stress p -ern at higher modes. It is evident from the definition given
as Eq. (A4) that the stress-field product should not vary greatly
throughout the body in order to maintain high coupling.

rhis effect can sometimes be used to increase the effective couplir.g.
Regions with full electrical excitation but low stress levels may be
removed from the transducer. For instance, in flexural bars and plates,
the low stresses near the neutral plane deteriorate the coupling. If

P1.. S. Woollen, -Theoy of dhu Piezoelectdc Flexural Disk Transducer with Apl.i-atiou
to Underwater Sound, USL Research Repon no. 490. S-FOOl O3 04-1, pp. 71-74, 1960.
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these layers of ceramic are replaced by low-modulus inert material)
the coupling may increase.

DYNAMIC COUPLING OF THE
PARTIALLY EXCITED BAR

According to the definition of coupling used in this report, vibrations
which do not directly participate in the electromechanical conversion
process (i. e., are not electrically active) and static electrical elements
which store electrical energy without being coupled to the vibrations
through the piezoelectric effect (i. e., external capacitances) both tend
to decrease the effective coupling coefficient of a transducer.

One example of this effect is the composite transducer in which an
electromechanical driver excites other electrically inert, resonant, or
non-resonant structures. A transducer coupled to a fluid-filled cavity
is such a device; the effective coupling is lowered even if the cavity is
tuned to have rero reactance at the natural resonance of the driver.

An experiment to test this principle has been performed by Toulis.1 3

It consists of measuring the resonant and anti-resonant frequencies of
a segmented multi-electroded stack of ceramic for varying degrees of
electrical excitation. This experriment was described previously, and
the frequency data appears in Fig. 5.

What is the theoretical dynamic coupling of such a partially excited
st,.r*.rs frnr , the energy-balance viewooint? One finds immediatelv

the electrical and mutual energies (in half the bar) to be

V (y) 1 J3. A] (68)

and

=!(y) d 33 A Td 8. dbIt (69)

13 Totiis, op. cit.
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i

since • = 0. The elastic energy, though, has two distinct parts: a
contribution from the "d" section and one from the "f" sactio.a:

It
V2 y SK ~A~f tT2 dz +! A T2 dZ2 2 33 . T 2 S (70)

Ud + U -

By Eq. (54) the dynamic coupling of the comnposite bar is

Iy2

k 12 W212 (71)
TIMIR + U, ) (I + UU4 U/U 4 )

Comparing Eq. (71) with the work on pages 19 and 20 reveals that
(Wa /W 1 U4 )• is the effective coupling of a fully excited constant
field bar of half length yt , while (I + U,/Ud) is a - rrection term
tI account for the electrically inactive end sections of t, partially
ex.cited bar.

Computation of the ratio U1 /U. at system resonance as a function
of y is tedious. The general form (that is, at all frequencies) is

U oioy l Ai[(l-)).(1 4co' Ae)(smiaA cosA1 -sm yAtcosy A,)(I -coca.%f)-2col Ais(a2 1 'A- •m ) A%)l
Ud , 1-) •----4 (• 9y A, * cot A, coy,,. 1)

3 (yA, " sia y A4 coo y%) -

(72)

To find the effective coupling ac the fundamental resonance as a function
of y, one colves Eq. (43) for the resonance paranicters A"(,;"
forms the functions

At . VI -k2 Ax
33 'd (73)

and evaluates B()) from Eq. (72).

IN2
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The coupling ins2'

Iyy)bAd(yA d COSyA d+cot A d)(+2d (74)

These computations were performed on a digital computer; the results
appear in Fig. 7 for various values of k3, .

.70-

k 15. .30 k Efecv Coqiu o0 a35IfyEctdSakasaFutm fDpe

Exctataa ix aziw Vlue ofk 33 8O

The simplctie f oigorml Eq (63)all bzeomSaik th noationofDg of ti
problemfoWowVlu o k3

The elaivemaxium f k l(y) ner y=0.7reutsbcas

th2 aslaigo6h lcrclyaciec!ta atb h nxie



Once again this approximate expression is sufficiently accurate for

good engineering over all of the range of k 33  presently available

(less than 1 percent error for all Y and all k 33 < 0.65).

Applying Eq. (75) to Toulis' data (Fig. 5) produces the experi-

mental coupling versus y points plotted in Fig. 6. The theoretical
curve for k.3 = 0. 64 is also drawn for comparison (solid curve). An
earlier study of a partially excited, side-electroded bar was made by
Beckmann and Parsons.1

4 Although their treatment was simplified by
neglecting the change of elastic properties of the material between the

active and inactive regions, the general shape is similar (Fig. 8,
dashed line).

.60-

.50-

.40- k.1f (EXACr) FOR 33 -. 64

- - - - SECKMAN & PARSONS

.30ý fOULIS' EXPfIIMENTAL POINTS

S0

Fig. 86 Dyrnamic Coupluing Coeffic~cflI of the Prtially Excited Bar versus y

"1R. Beck-nina and P. L. Pance, ?Iczoelectricit-,, i. M. Stationiery Office, London,
p. 296, 1957.
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